

CATERPILLAR, INC.

EXECUTIVE ORDER U-R-001-0191 New Off-Road Compression-Ignition Engines

Pursuant to the authority vested in the Air Resources Board by Sections 43013, 43018, 43101, 43102, 43104 and 43105 of the Health and Safety Code; and

Pursuant to the authority vested in the undersigned by Sections 39515 and 39516 of the Health and Safety Code and Executive Order G-45-9;

IT IS ORDERED AND RESOLVED: That the following compression-ignition engine and emission control system produced by the manufacturer are certified as described below for use in off-road equipment. Production engines shall be in all material respects the same as those for which certification is granted.

MODEL YEAR	ENGINE FAMILY	DISPLACEMENT (liters)	FUEL TYPE	USEFUL LIFE (hours)
2002	2CPXL10.5MRD	10.5	Diesel	8000
SPECIAL	FEATURES & EMISSION	CONTROL SYSTEMS	TYPICAL EQUIPMENT A	
Direct Die	sel Injection, Turbocharg and Smoke Puff Li	er, Charge Air Cooler miter	Generator and Ex	cavator

The engine models and codes are attached.

The following are the exhaust certification standards (STD) and certification levels (CERT) for hydrocarbon (HC), oxides of nitrogen (NOx), or non-methane hydrocarbon plus oxides of nitrogen (NMHC+NOx), carbon monoxide (CO), and particulate matter (PM) in grams per kilowatt-hour (g/kw-hr), and the opacity-of-smoke certification standards and certification levels in percent (%) during acceleration (Accel), lugging (Lug), and the peak value from either mode (Peak) for this engine family (Title 13, California Code of Regulations, (13 CCR) Section 2423):

RATED POWER	EMISSION STANDARD				EXHAUST (g/kw-l	hr)		O	PACITY (%	6)
CLASS	CATEGORY		нс	NOx	NMHC+NOx	co	PM	ACCEL	LUG	PEAK
130 <u><</u> KW<225	Tier 1	STD	1.3	9.2	N/A	11.4	0.54	20	15	50
		CERT	0.2	6.2		1.8	0.15	17	3	38

BE IT FURTHER RESOLVED: That for the listed engine models, the manufacturer has submitted the information and materials to demonstrate certification compliance with 13 CCR Section 2424 (emission control labels), and 13 CCR Sections 2425 and 2426 (emission control system warranty).

Engines certified under this Executive Order must conform to all applicable California emission regulations.

This Executive Order is only granted to the engine family and model-year listed above. Engines in this family that are produced for any other model-year are not covered by this Executive Order.

Executed at El Monte, California on this

day of December 2001.

R. B. Summerfield, Chief Mobile Source Operations Division

Engine Model Summary Form

Manufacturer: CATERPILLAR INC.

Engine category: Nonroad Over 50 Hp
EPA Engine Famy: 2CPXL10.5MRD

Mfr Family Name: N/A

Process Code: New

s Code: idew Submission

U-R-801-0191

K					Contract of the last of the la			
	67.0	166	846 @ 1200	88.0	145	250 @ 1800	33(10	
0 EM, DI, TC, SPL	0.00	190	1006 @ 1400	109.0	162	300 @ 2000	3305	7
-	3.08	198	1116 @ 1200	107.0	176	300 @ 1800	3306	۵ د
O CAC EM, DI, TC, SPL,	82.0	181	1050 @ 1350	1050	174	300 @ 1800	3306	7
	88.0	187	874 @ 1400	108.0	146	300 @ 2200	3300	۵ د
	92.0	195	1007 @ 1400	114.0	154	300 @ 2200	3300	2 /
.0 PEM, DI, TC, SPL	136.0	337	1450 @ 1200	147.0	243	39/ @ 1800	3306	o labori
ange.	മാഴ change	these fuel rates	ì	Due to product-	nomited values.	fuel rates are	and Peak Torque	0
9.Emission Control (lb:hr)@peak torque Device Per SAE J1937	S.Fuel Rate: (lb:/hr)@peak to	7.Fucl Rate: mm/stroke@pesk to:que	6.Torque @ RPM (SEA Gross)	5.Fuel Rate: (lbs/hr) @ peak HP (for diesels only)	4.Fue! Rate: mrv/sbo/te @ peak HP (for diesel only)	3.BHP@RPW (SAE Gross)	2.Engine Model	1.Engine Code

model-1-cert Engine withwating 3 974 1800 rp are not effered for sale in alifornia

4615 .ON

٥.

CAT VV MOSSVILLE

DEC: 3.2001 12:23PM